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Abstract
We calculate the pair distribution function, g(r), in a two-dimensional electron
gas and derive a simple analytical expression for its value at the origin as a
function of rs. Our approach is based on solving the Schrödinger equation for
the two-electron wavefunction in an appropriate effective potential, leading
to results that are in good agreement with quantum Monte Carlo data and
with the most recent numerical calculations of g(0) (Bulutay and Tanatar 2002
Phys. Rev. B 65 195116). We also show that the spin-up spin-down correlation
function at the origin, g↑↓(0), is mainly independent of the degree of spin
polarization of the electronic system.

1. Introduction

There has recently been a growth of interest in studying the pair distribution function, g(r), in
electron gas models [1–4], caused mainly by its relevance in non-local density functional
theories [5–7]. The zero inter-electronic distance value, g(r = 0), also appears in the
large wavevector and the high-frequency limits of the electronic charge and spin response
functions [8, 9]. The importance of g(r) lies in its connection with the electronic exchange and
correlation of the electron gas model. Moreover, theoretical calculations of the pair distribution
function can be directly compared with material properties since g(r) is the Fourier transform
of the static structure factor.

The pair distribution function is the probability of finding a pair of electrons at a distance
r from each other. Therefore, the average number of electrons in a spherical shell centred on
a given electron is ng(r)�Dr D−1 dr , where �Dr D−1 dr is the volume of the D-dimensional
shell and n = N/V is the uniform electron density. At large distances, g(r) approaches 1,
whereas near the origin, where the electron charge is depleted, it is small on account of the
Pauli exclusion principle and the exchange and correlation effects associated with the Coulomb
interaction.

The subject of this paper is an analysis of the dependence of the pair correlation function
on the inter-electronic distance and electron density in a two-dimensional, interacting, spin-
polarized electron system. Earlier approaches to the calculation of this quantity using the
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random phase approximation, the Hubbard approximation or the self-consistent Singwi–Tosi–
Land–Sjölander approximation [10–12] were inadequate leading to divergences and negative
values of the pair correlation function near the origin. Calculations of g(r) in a two-dimensional
paramagnetic electron gas have also been reported by Freeman [13] and Nagano et al[14] within
the ladder approximation, by Tanatar and Ceperley [15] using the diffusion quantum Monte
Carlo method (QMC) and, more recently, by Bulutay and Tanatar [16] using the hypernetted-
chain approximation (CHNC). Moreover, an analytical expression of g(0) has previously been
derived by Polini et al [4].

In order to calculate g(r), we follow the approach developed in three-dimensional systems
by Overhauser [17] and further refined in [18] and [3]. This method is based on the relation
between g(r) and the two-electron scattering problem in an appropriately chosen effective
potential which will be discussed in detail in the following sections. In addition to obtaining
the variation of the pair distribution function as a function of the coupling strength, rs, and of
the spin polarization, we also derive an analytic expression for g(0):

g(0) = 1

2

1

[1 + 0.6032rs + 0.072 63r2
s ]2

. (1)

This expression is found to agree very well with the results of the most recent numerical
calculations [15, 16]. We also compare our results with the expression derived in [4].

2. Effective model for the pair distribution function

A spin-polarized electron gas is characterized, in equilibrium, by two parameters: the electronic
density, or its equivalent rs, and the polarization, ζ = (n↑ −n↓)/(n↑ +n↓), where n↑ and n↓ are
the spin-up and spin-down electron densities. For this system, the pair distribution function is
given by

g(ρ) = 1
4 [(1 + ζ )2g↑↑(ρ) + 2(1 − ζ 2)g↑↓(ρ) + (1 − ζ )2g↓↓(ρ)], (2)

where gσσ ′ are the spin-resolved pair distribution functions. Following Overhauser [18], gσσ ′

can be related to the two-electron wavefunctions by [3]:

g↑↓(ρ) = 1
2 〈|�singlet(ρ)|2〉p↑↓(k) + 1

2 〈|�triplet(ρ)|2〉p↑↓(k), (3)

g↑↑(ρ) = 〈|�triplet(ρ)|2〉p↑↑(k), (4)

g↓↓(ρ) = 〈|�triplet(ρ)|2〉p↓↓(k), (5)

where �singlet(ρ) and �triplet(ρ) are, respectively, the two-electron wavefunction for the singlet
and triplet states and 〈· · ·〉pσσ ′ (k) denotes the average over the probability of finding two electrons
with relative momentum k and spins σ and σ ′ [3].

The wavefunction of an electron pair, �(ρ), verifies an effective Schrödinger equation:

− h̄2

2m∗

(
∂2Ψ
∂ρ2

+
1

ρ

∂Ψ
∂ρ

+
1

ρ2

∂2Ψ
∂φ2

)
+ V (ρ)Ψ = EΨ, (6)

where V (ρ) is the effective potential, m∗ = m/2 is the reduced mass and E is the energy of the
electron pair, which is approximated by h̄2k2/(2m∗). Since the solution to this equation can
be written as Ψ = ∑

m cos(mφ)�m(ρ), the spin-resolved pair distribution functions become

g↑↓(ρ) = 〈|�0(ρ)|2〉p↑↓(k) + 2
∞∑

m=1

〈|�m(ρ)|2〉p↑↓(k), (7)

g↑↑(ρ) = 4
∑

m odd

〈|�m(ρ)|2〉p↑↑(k). (8)



Pair distribution function in a two-dimensional electron gas 6323

Overhauser’s method relies on the appropriate selection of an effective potential capturing
the short-range correlation effects of the Coulomb interaction. In three dimensions,Overhauser
chose the electrical potential created by an electron and a neutralizing sphere of uniform charge
with radius rs surrounding it [17, 18]. The effective potential is expected to mimic the true
one when the relative distance between electrons verifies r < rs. When r > rs the potential
vanishes and is not expected to be close to the true potential felt by an electron moving in a
uniform electron gas. This approach is equivalent to assuming that the probability of finding
three electrons in a sphere of radiusrs is exactly zero [3]. Numerical estimates of this probability
for a three-dimensional interacting electron gas [19] have shown that is indeed small and we
expect the same result to hold in two dimensions.

Following this procedure, in two dimensions, we might approximate the screened Coulomb
potential by the potential of an electron surrounded by a circle of radius rs uniformly filled
with screening charge density ne = e/(πr2

s ). For convenience, we introduce dimensionless
variables, x = ρ/rs and V (x) = V (ρ)/(e2/rs), where rs is measured in units of Bohr radius
(aB = h̄2/me2),

V (x) =




1

x
− 4

π
E(x), x � 1

1

x
− 4

π
x

[
E

(
1

x

)
−

(
1 − 1

x2

)
K

(
1

x

)]
, x � 1

(9)

where K (x) and E(x) are, respectively, the complete elliptic integral of first and second kind.
The screened potential of a uniformly charged disc of radius rs with an electron at its centre
does not vanish, but it has an attractive long-range tail, V (x → ∞) → −1/(8x3). Since
we are interested in obtaining an analytical expression for g(0), a further simplification of the
effective potential is needed. Since Overhauser’s effective potential is not reliable outside the
disc of radius rs, the most reasonable simplification is to make it zero outside this disc. To
avoid a discontinuity in the effective potential and considering that V (x) is arbitrary to the
extent that a constant can be added to it, we subtract from the potential in the region where
x � 1 its value at x = 1, V0 = 1 − (4/π). Thus, our effective potential is:

Veff(x) =



1

x
− 4

π
E(x) +

4

π
− 1, x � 1

0, x � 1.
(10)

Figure 1 displays the initial effective potential from equation (9) together with our election
of effective potential, equation (10), and the choice of Polini et al [4], which was based on
a previous variational calculation [20]. The main difference between the effective potential
used in [4] and ours is that the former has a discontinuity at ρ = √

πrs/2 while ours is always
continuous.

Using equation (10) for the electronic potential, the Schrödinger equation becomes:

d2�m

dx2
+

1

x

d�m

dx
+

(
q2 − m2

x2

)
�m(x) = 0, x � 1,

d2�m

dx2
+

1

x

d�m

dx
+

(
q2 − m2

x2

)
�m(x)

− rs

(
1

x
− 4

π
E(x) +

4

π
− 1

)
�m(x) = 0, x � 1,

(11)

where the relative momentum is also renormalized, q = krs. The general solution for x � 1
is given by �m(x) = Jm(qx) + Bm(q, rs)Nm(qx), where Jm is the Bessel function of order m
and Nm is the corresponding Neumann function. The coefficient Bm(q, rs) can be written as
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Figure 1. Normalized effective potential, V (ρ)/(e2/rs), as function of ρ/rs . The potential from
equation (9) (solid curve) and our choice of effective potential, equation (10) (dashed curve) are
displayed. The effective potential used by Polini et al [4] is also shown (dotted curve).

Bm(q, rs) = cot(δm(q, rs)), where δm(q, rs) is the wavefunction phase shift due to the presence
of the scattering potential1.

To find the solution inside the circle of radius unity we make a Taylor expansion of the pair
wavefunction: �m(x) = ∑∞

n=m αm,n xn . We arrive at the following recurrent relation between
the coefficients:

(n2 − m2)αm,n = rs

{
αm,n−1 +

(
4

π
− 3

)
αm,n−2 +

∑
r

A(r)αm,n−2r−2

}
− q2αm,n−2, (12)

where A(r) = 2
[

(2r−1)!!
2r r!

]2 1
2r−1 . As a consequence of this recurrent relation, every αm,n is

proportional to αm,m and a function of rs and q , αm,n = αm,m Fn(rs, q).
In order to solve equation (11) we match �m(x) and its derivative at x = 1:

αm,m Gm(rs, q) = Jm(q) + Bm(q, rs)Nm(q) (13)

αm,m F̃m(rs, q) = q J ′
m(q) + Bm(q, rs)q N ′

m(q) (14)

where Gm(rs, q) = ∑∞
n=m Fn(rs, q) and F̃m(rs, q) = ∑∞

n=m nFn(rs, q). For a given
momentum transfer and coupling strength the parameters αm,m and δm(q, rs) become

αm,m(q, rs) = Jm(q) + cot(δm(q, rs))Nm(q)

Gm(rs, q)
, (15)

and

cot(δm(q, rs)) = F̃m(rs, q)Jm(q) − Gm(rs, q)q J ′
m(q)

Gm(rs, q)q N ′
m(q) − F̃m(rs, q)Nm(q)

. (16)

The pair wavefunctions�m(x) are computed for any value of q and rs using equations (15)
and (16) and the spin-resolved pair distribution functions are calculated using equations (7)
and (8) and an appropriate choice for the distribution of the relative momentum of an electron
pair. For simplicity, we use the probability distribution of a free Fermi gas. For the unpolarized
electron system, the probability of a pair with momentum q is independent of the spin

1 At large distances the two-electron wavefunction can be written as: �m(x) → √
2/πqx [cos(qx − mπ/2 −π/4) +

cot(δm(q, rs)) sin(qx − mπ/2 − π/4)] = [1/ sin δm(q, rs)]
√

2/πqx sin[qx − mπ/2 − π/4 + δm(q, rs)].
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Figure 2. Pair distribution function of the unpolarized electron gas at rs = 1 as a function of rkF.
Our approximation (solid curve) is compared with the quantum Monte Carlo data of [15] (crosses).
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Figure 3. Pair distribution function of the unpolarized electron gas at rs = 5 as a function of rkF.
Our approximation (solid curve) is compared with the quantum Monte Carlo data of [15] (crosses).

orientation and proportional to the overlap between two circles of radius kF displaced by
2q [19],

pσσ ′(q) = 16q

πk2
F


arccos

(
q

kF

)
−

(
q

kF

)√
1 −

(
q

kF

)2

 . (17)

Figures 2 and 3 display our results for the pair distribution function of the unpolarized
system at rs = 1 and 5 respectively. We have used seven (mmax = 7) partial waves and up to
n = 50 terms for the expansion of �m(x) in the internal disc. We have checked that this choice
of parameters is consistent with the charge neutrality condition, 2

∫ ∞
0 x dx[g(x)−1] = −1, for

small values of rs. Our results at moderate coupling strengths agree quite well with the QMC
data [15]. However, at larger values of rs our method is unable to reproduce the strong quantum
oscillations of the numerical results and tends to slightly overestimate the value of g(r). This
discrepancy is expected and shared by previous calculations using a self-consistent Hartree
scheme [1]. With decreasing dimensionality the role of exchange and correlations becomes
more important and a screened Coulomb potential is insufficient to completely capture this
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physics. The use of self-consistent spin-dependent effective potentials has proved able to
reproduce more closely the numerical results in this range of densities [2].

3. Pair distribution function at the origin

At zero distance, g↑↑(ρ = 0) vanishes on account of the Pauli exclusion principle, while
g↑↓(ρ = 0) is determined by the m = 0 component of the two-body wavefunction,

g↑↓(ρ = 0) = 〈|�0(ρ = 0)|2〉p↑↓(k) = 〈|α0,0|2〉p↑↓(k). (18)

Since the distribution of the relative momentum of an electron pair is a smooth function,
a good estimate of 〈|α0,0|2〉p↑↓(k) is obtained by making an expansion around the momentum
where the distribution reach its maximum as:

α0,0 ∼ 1

G(rs)
, (19)

where the momentum dependence of G has been dropped. Using the recurrent relation (12),
we obtain a series expansion of G(rs):

G(rs) = 1 + rs

{
a1 +

∞∑
m=1

A(m)

(2m + 2)2

}
+ r2

s

{
a2 +

∞∑
m=1

A(m)

[
1

(2m + 3)2

(
1 +

1

(2m + 2)2

)

+

(
1

π
− 3

4

)
1

(2m + 4)2

(
1 +

4

(2m + 2)2

)

+
∞∑

n=1

A(n)
1

(2n + 2)2(2n + 2m + 4)2

]}
+ O(r3

s )

∼ (1 + 0.6032rs + 0.072 63r2
s ) (20)

where a1 = 1
4 + 1

π
and a2 = 5

9π
− 1

6 + 1
4

(
1
π

− 3
4

)2
.

We can obtain g(0) at any order in the expansion on the parameter rs since g(ρ = 0) =
1
2 g↑↓(0) = 1

2
1

G(rs)
2 . To first order in the expansion of G(rs) the pair distribution is:

g(ρ = 0) = 1

2

1

[1 + 0.6032 rs]2
. (21)

To second order we recover equation (1). Our approximation procedure also allows us to sum
all the orders as:

g(ρ = 0) = 1

2

( ∞∑
n=0

α0,n

α0,0

)−2

. (22)

Finally, we also calculate g(0) performing the average over the distribution of relative
momenta:

g(0) = 1
2 g↑↓(0) = 1

2

∫ kF

0
p(q)|α0,0(q, rs)|2 dq (23)

where α0,0(q, rs) is given by equations (15) and (16) and p(q) by (17).
Figure 4 displays the pair distribution function of a two-dimensional unpolarized electron

gas at the origin as a function of the coupling strength rs. We display the quantity rsg(0)

instead of g(0) to emphasize the large rs region where g(0) becomes very small. Results of
the first order in the analytic expansion on rs, equation (21), the second order, equation (1),
and the infinite-order solution, equation (22), together with the momentum average results,
equation (23), are displayed. In addition, the numerical and analytical results of Nagano
et al [14], the numerical calculation of Bulutay and Tanatar [16] and the recent estimate by
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Figure 4. Two-particle distribution functions at the origin (g(0) have been multiplied by rs) as
a function of rs. Results of the analytical expansion to first order given by equation (21) (dot–
dashed curve), second order by equation (1) (dashed curve) and infinite order (equation (22)) (dot–
double-dashed curve), and the average over the distribution of relative momentum (equation (23))
(long-dashed curve) are displayed. The numerical (black squares) and analytical (black circles)
results of Nagano et al [14], the numerical results of Bulutay and Tanatar [16] (solid curve) and
the interpolation results of Polini et al [4] (dotted curve) are also displayed.

Polini et al [4] are also included for comparison. Several conclusions can be made. By adding
additional terms in the analytical expansion on rs we are able to closely approach the numerical
results [16] in the low-density regime. Note that equation (1) is already a reliable analytical
expression for g(0). Figure 4 also shows that the results of the momentum average approach,
equation (23), are slightly below Bulutay and Tanatar’s results for small rs, but become even
closer to the numerical curve in the low-density regime. The momentum average results are
also very close to the analytical estimates of [14]. In this regime, the analytical expression
obtained on [4] displays much larger values of g(0) than the available numerical data [15, 16].

The contact value of the pair distribution function changes when the electron gas is
polarized. The spin polarization directly appears on the expression for g(0), g(0) =
1−ζ 2

2 g↑↓(0). In addition, the polarization modifies the distribution of momenta of the electron
pair and, as a consequence, the value of g↑↓(0). We calculate the spin-resolved pair distribution
function as:

g↑↓(ζ, ρ = 0) =
∫ k+

0
pζ (q)|α0,0(q, rs)|2 dq (24)

where pζ (q) is the distribution of relative momentum in the polarized electron gas:

pζ (q) =




8q

max(k2
F↑, k2

F↓)
(for 0 � q � k−)

8q

πk2
F↑k2

F↓

[
k2

F↑
(
arccos(x) − x

√
1 − x2

)
+ k2

F↓
(
arccos(y) − y

√
1 − y2

)]
(for k− � q � k+)

(25)
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where x = (q+[(k2
F↑−k2

F↓)/4q])/kF↑, y = (q−[(k2
F↑−k2

F↓)/4q])/kF↓ and k− = |kF↑−kF↓|/2,
k+ = (kF↑ + kF↓)/2. The Fermi momentum for the spin-up (spin-down) population is related
with the polarization and the Fermi momentum of the unpolarized gas (kF) by kF↑ = kF

√
1 + ζ

and kF↓ = kF
√

1 − ζ .
Our results show that g↑↓(ζ, ρ = 0) is largely unaffected by the degree of spin polarization.

The difference between g↑↓(ζ = 1, 0) and its unpolarized counterpart g↑↓(ζ = 0, 0) is, at
most, a few per cent for any given value of rs. The absence of a significant dependence on
the spin polarization was also found in previous calculations [4]. Moreover, given that the
momentum dependence of our results is rather weak, we do not expect important changes if
the free Fermi momentum distributions, equations (17) and (25), are replaced by the interacting
ones.

4. Conclusions

We have calculated the pair distribution function in a two-dimensional interacting electron gas,
following an approach originally developed in three dimensions by Overhauser [18]. Within
this framework, the short-range correlations of the Coulomb interaction are replaced by an
effective potential, and the calculation of g(ρ) is reduced to solving the corresponding two-
electron scattering problem and averaging over the probability distribution of the momentum
of the electron pair. Our results for g(r) at moderate coupling strengths agree well with the
numerical data [15]. At larger values of rs, however, this approximation is unable to reproduce
the strong quantum oscillations of the numerical results.

The analytic expression for g(0) as a function of rs, equation (1), derived in this context
compares very favourably with the complete solution of the effective potential, equation (23),
and with recent numerical calculations [15, 16]. We believe that the discrepancy between the
present results and the analytical expression obtained in [4] is essentially due to the different
choice of effective potential (see figure 1). Besides, while we have used the same approach for
all values of the electronic density and polarization, Polini et al use an interpolating scheme
between the results of a perturbative expansion at high density and Overhauser’s treatment of
scattering processes in the low-density limit.

We have also studied the dependence of g(0) with the spin polarization of the electron
gas. We have found that the spin-up spin-down correlation function, g↑↓(0), is basically
independent of the degree of polarization. Therefore, the polarization modifies g(0) only
through its dependence on the density, g(0) = 2n↑n↓

n2 g↑↓(0).
Within this approach, further study of how the choice of the effective potential modifies

the pair distribution function can provide valuable insight into the short-range electronic
correlations in real materials.
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